- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hona, Ram Krishna (3)
-
Schultz, Ebony (3)
-
Azure, Alexa D. (1)
-
Gipp, Nicole (1)
-
Guinn, Mandy (1)
-
White, Carl (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study investigates the thermoelectric properties of Ca2Fe2O5 over a temperature range of 7˚C to 50˚C. The experiment measured the voltage generated by temperature differences across two sides of the material, with a focus on the voltage response at temperatures both below and above room temperature. Results indicate that at lower temperatures (7˚C to 15˚C), the voltage generated by the temperature difference was higher, though not directly proportional to the magnitude of the temperature gradient. The highest voltage recorded for the smallest temperature difference in this range was 109 mV, observed between 14.6˚C and 17.6˚C (smallest temperature difference, 3˚C). Similarly, at temperatures above room temperature, the voltage generated was relatively lower, peaking at 125 mV between 9˚C and 44˚C (higher temperature difference). These results suggest complex behavior of Ca2Fe2O5’s thermoelectric response, with non-linear relationships between voltage and temperature differences at both low and high temperatures.more » « less
-
Schultz, Ebony; White, Carl; Gipp, Nicole; Hona, Ram Krishna (, Journal of Materials Science and Chemical Engineering)This study presents a novel and facile technique for the rapid and sensitive detection of zinc (Zn) in foods and drinking water. The need for a reliable method to monitor Zn levels in consumables is crucial due to its significance in both nutritional assessment and environmental safety. The proposed technique integrates state-of-the-art sensing technology with an easy-to-implement approach, aiming to provide an efficient solution for Zn detection. The methodology involves the utilization of complexation of Zn2+ ion with resorcinol and use of UV-vis spectrophotometry, which demonstrates high sensitivity towards Zn2+ ions. It detected zinc up to 10-5M solution.more » « less
-
Schultz, Ebony; Guinn, Mandy; Azure, Alexa D.; Hona, Ram Krishna (, ECS Advances)In this study, we investigate the utility of Ca2FeMnO6-δand Sr2FeMnO6-δas materials with low thermal conductivity, finding potential applications in thermoelectrics, electronics, solar devices, and gas turbines for land and aerospace use. These compounds, characterized as oxygen-deficient perovskites, feature distinct vacancy arrangements. Ca2FeMnO6-δadopts a brownmillerite-type orthorhombic structure with ordered vacancy arrangement, while Sr2FeMnO6-δadopts a perovskite cubic structure with disordered vacancy distribution. Notably, both compounds exhibit remarkably low thermal conductivity, measuring below 0.50 Wm−1K−1. This places them among the materials with the lowest thermal conductivity reported for perovskites. The observed low thermal conductivity is attributed to oxygen vacancies and phonon scattering. Interestingly as SEM images show the smaller grain size, our findings suggest that creating vacancies and lowering the grain size or increasing the grain boundaries play a crucial role in achieving such low thermal conductivity values. This characteristic enhances the potential of these materials for applications where efficient heat dissipation, safety, and equipment longevity are paramount.more » « less
An official website of the United States government
